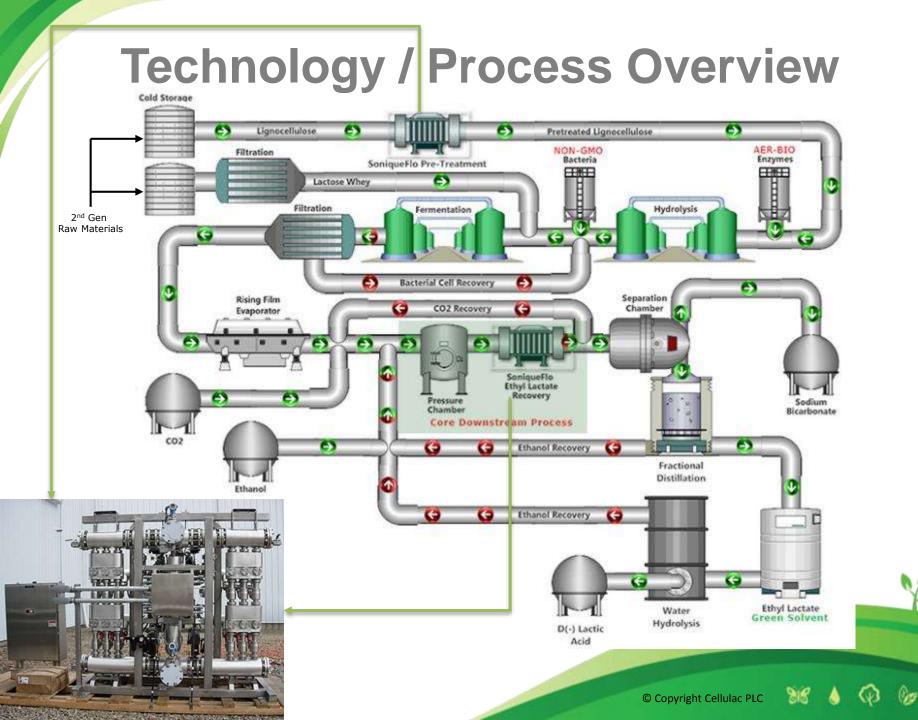
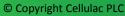


Production of high value lactic acid based, biochemicals using low OpEx end-to-end solution

Retrofit/Upgrade existing fermentation sites

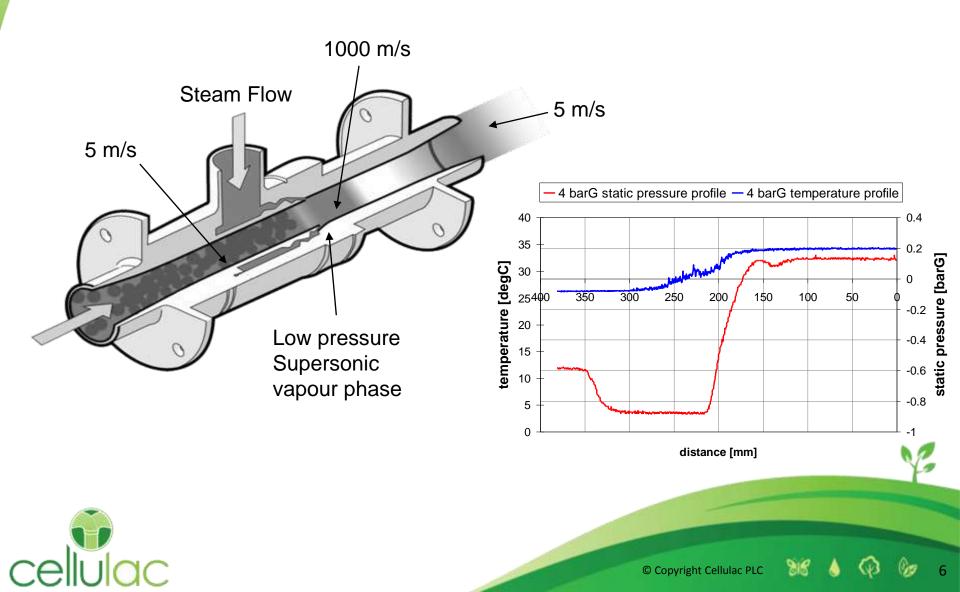

Former Brewery 100,000 Tonnes

© Copyright Cellulac PLC



Nameplate Capacity: 100,000MT

Cellulac Production Facility


Agenda

1	Core Technology				
2	Food and Beverage				
3	Brewing				
4	Industrial Mixing				
5	BioEnergy				
6	Waste Water				
7	Oil & Gas Industry				

Fluid Processor SoniqueFlo

SoniqueFlo Processing Mechanisms

Pumping

- Provides entrainment force for powders and liquids
- Minimal effects on existing plant equipment

Heating

- Homogenous, cross bore, rapid heating. Very high thermal efficiency

Entrainment and mixing

 Rapid entrainment and homogenous mixing of difficult to handle powders and liquids into the process fluid

Separation

Agitation and disruption of product

Volatile Stripping

- Stripping of volatiles in low pressure mixing zone

Breaking Emulsions

- Disruption of interfacial film, addition of heat, intimate mixing of demulsifying chemicals

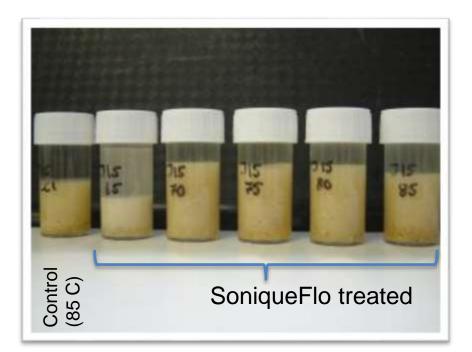
Creating emulsions

Dispersion of phases, heating, intimate mixing of emulsifiers

SoniqueFlo Test & Industrial Scale Units

Algae Processing Test Rig Cellulac Laboratory, UK

Pretreatment Processing Full Scale Rig Ethanol Production Plant, USA


25 Industrial Scale, Brewing, Food, and Biochemical Installations since 2011

SoniqueFlo Impact on Starch

Hyper-swelling of Starch during SoniqueFlo Gelatinisation

- Increase in average swelling size of starch grains
- Provides materials Functionality
 - Increased viscosity
 - Increased and differentiated availability as an enzyme substrate

SoniqueFlo Industry Sectors/Applications

High levels of powder and liquid mixing

Rapid Performance

Homogenous & repeatable performance

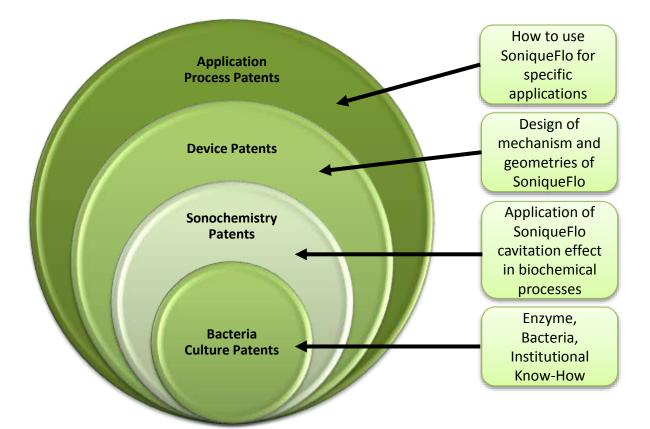
Unique effects on starch

High thermal efficiency

Scalable

Controllable

No moving parts, minimal risk of blocking


Robust

Low maintenance requirements

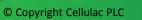
Existing 4 Layers of Protection

P 6 12

Cellulac Intellectual Property

> 19 families of patents and applications

- ➤ 17 SoniqueFlo Fluidic hydrodynamic cavitation
 - > Developed by Dr Marcus Fenton, Cellulac Chief Engineer
- ➤ 2 Lactic Acid bacteria
 - > Developed by Dr Patrick Walsh, Cellulac Chief Science Officer
- ≻60+ granted or approved for grant patents
- ► 17 proprietary enzyme cell systems
- ➤ 30+ pending or provisional patents



Agenda

1	Core Technology				
2	Food and Beverage				
3	Brewing				
4	Industrial Mixing				
5	BioEnergy				
6	New Business Opportunities				
7	Oil & Gas Industry				

Food and Beverage Installed Base

Licenced (Non Exclusively) for Food, Beverage and Brewing applications.

21 commercial food and beverage installations globally^[1]

Applications areas

- Sauce and ready-meal production
- Pasta, rice and cereal cooking.
- Powder entrainment for gums and starches
- Salt and sugar dissolution

[1] As of June 2013

Food and Beverage Process Benefits

Process Compression

Increase capacity both in batch size and cycle time (up to 60%).
 Reduced physical footprint and reduced energy demand

Ingredients savings

Physical modification (hyper-swelling) of starch in SoniqueFlo processes allows starches, flours, salt, sugar and fats to be significantly reduced in formulations whilst retaining quality sensory characteristics.

Processing of Particulates

- Processed Foods with particulates, such as pasta and diced meat and vegetables retain their integrity. Thus no back addition, reducing cost

Product Quality

Non-contact heating eliminates product burn-on, and reduces
 Maillard browning giving quality appearance and flavour to products.

Agenda


1	Core Technology				
2	Food and Beverage				
3	Brewing				
4	Industrial Mixing				
5	BioEnergy				
6	Waste Water				
7	Oil & Gas Industry				

SoniqueFlo Brewing Products

Licenced (Non Exclusively) for Food, Beverage and Brewing applications.

Brewing Wort Boiler Product

Up to 50% energy saving

Reduced cleaning frequency

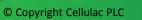
Automated control system

Easily retrofits any brewery

Boiler steam conditioning

Installed in these breweries

Brewery	Country	Units
Shepherd Neame	England	2 x SoniqueFlo Wort
Radeberger	Germany	1 x SoniqueFlo Wort
Bitburger	Germany	1 x SoniqueFlo Wort
Warsteiner	Germany	1 x SoniqueFlo Wort
Susquehanna Brewing	United States	1 x SoniqueFlo Wort
MillerCoors	United States	1 x SoniqueFlo Wort



Agenda

1	Core Technology				
2	Food and Beverage				
3	Brewing				
4	Industrial Mixing				
5	BioEnergy				
6	Waste Water				
7	Oil & Gas Industry				

SoniqueFlo Industrial Mixing

SoniqueFlo Types

Standard Liquid or Slurry Processing Unit

Direct Powder Entrainment Unit

Direct Liquid Entrainment Unit

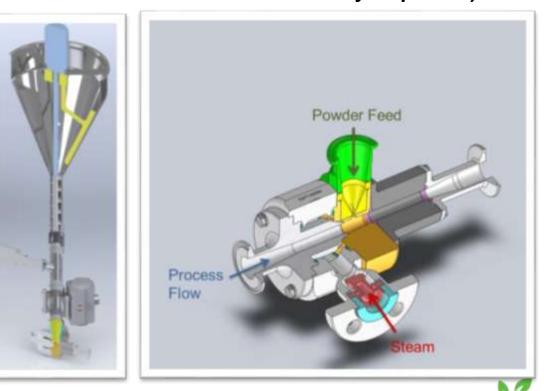
SoniqueFlo Typical Uses

Heavy industrial Applications

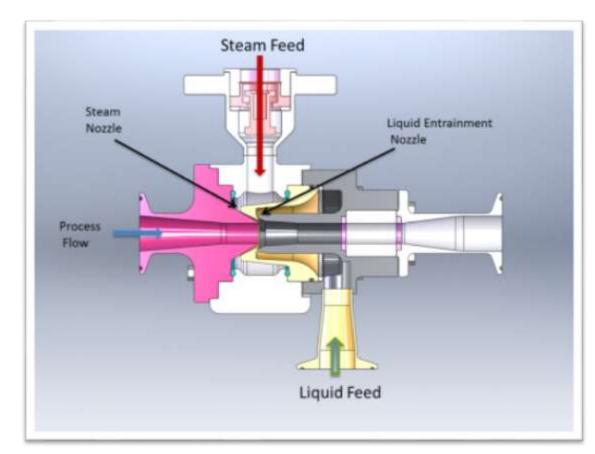
Harsh Environments

Handling Very Coarse Slurries

Handling Very Abrasive Slurries



Direct Powder Entrainment Units


Powdered materials, such as gums, minerals, pigments and salts are entrained into the process flow via a port in the units body downstream of the steam nozzle. Ideal for hard to handle powders (e.g. hydroscopic and hydrophobic)

- **High volume entrainment** and dispersal of inert powders (1:1 v/v)
- **Single pass** continuous entrainment of gums and binders
- Rapid entrainment and hydration of binders in low water systems (>15% w/w)
- Facilitates dispersal & hydration of powders in viscous and non-Newtonian systems

Direct Liquid Entrainment Units

A liquid is entrained into the main process flow via a second annular nozzle just downstream of the steam nozzle.

High Speed. Supersonic mixing of two fluids

High Dispersed Phase. Generates very high interfacial area for chemical reactions.

Example. Hot-Cold process for emulsion formation, new product structures.

Direct Liquid Entrainment Units

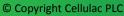
Process Type	Example System	Benefits	Industries	
Hot-Cold Processes	Emulsion, dispersions, surfactant vesicles	Reduced cycle time. Reduced energy Novel new structures	Home and Personal Care Products, Paints, Coatings, Chemicals	
High speed mixing	Rapid physical and chemical reaction kinetics	High product yield. Generates new processes & products	Chemicals, Materials, Ingredients, Home and Personal care	
In-line process step	Conversion from batch to continuous production	Increased capacity	Chemicals	

Agenda

1	Core Technology				
2	Food and Beverage				
3	Brewing				
4	Industrial Mixing				
5	BioEnergy				
6	Waste Water				
7	Oil & Gas Industry				

Gen1 - Ethanol Reactor System (ERS)

Installed in 5 US Ethanol Plants totaling 380 MGPY

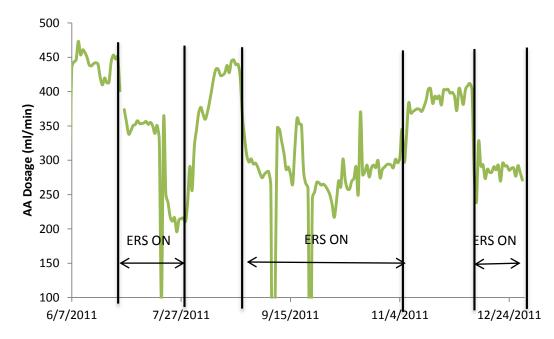

Capacities from 45 – 130 MM gal/year

Skid-Mounted. Fully Automated. Start-Up, Shut-Down and Clean-In-Place

High Turbulence. Efficient heating. No Hotspots

Reduces enzyme usage

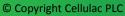
Enzyme Savings Validation



130 MM Gal/Year Plant

Consistent reduction in enzyme usage with ERS

25% reduction = ~\$1,000 Per day in savings



"Also, I wanted to report that the total alpha reduction was 25%: Normal alpha usage (4/1-4/14) is 464 mL/min Alpha usage with liq reduction was 348 mL/min"

Amanda Marquis – Plant Chemist

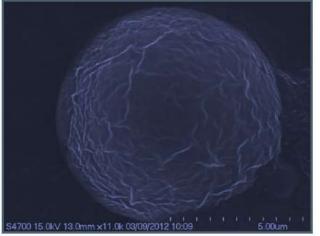
Gen2 – Hemicelluloscic Materials

cellulac

Trials: US sugar cane producer for cellulosic ethanol

Bagasse: by-product from sugar cane following normal sugar extraction

SoniqueFlo demonstrated the potential for enhancing the process to generate


Yield improvement

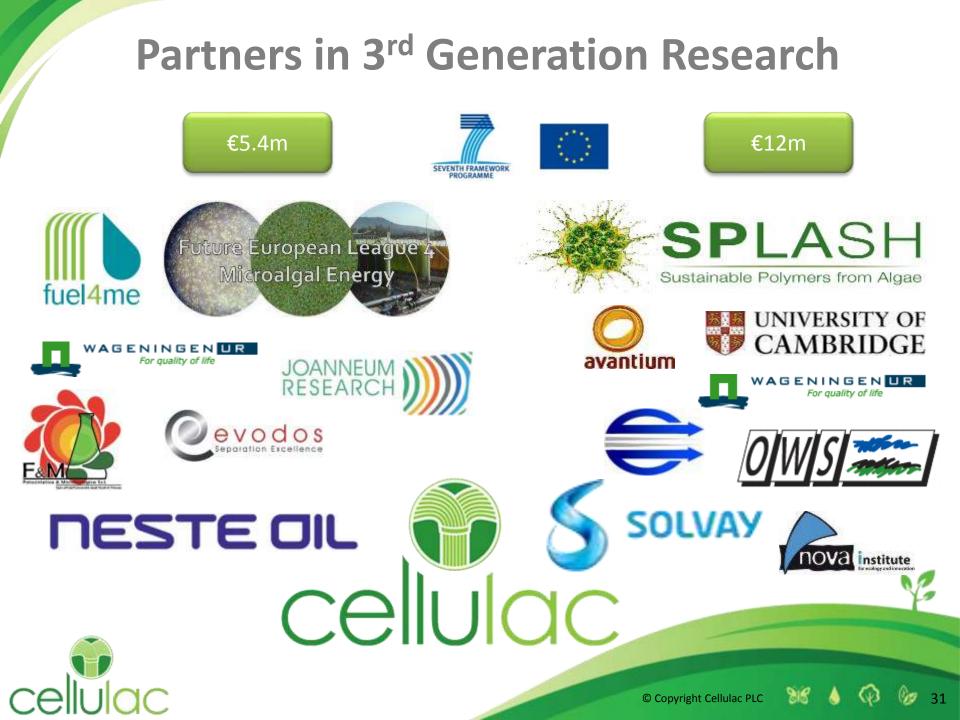
Increased efficacy

Operational efficiencies

Gen3 – Algae

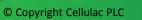
Library of tailored enzyme cocktails

Observations


- Algae cell wall structures are complex and poorly characterized
- Cell wall structures vary across strains & cultivation conditions
- Variety of target products are wide

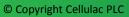
Success Factors

- Enzyme cocktails tailored to a specific strain/application
- Downstream mechanical and enzyme cell disruption steps are an integral part of the lipid extraction solution



Agenda

1	Core Technology				
2	Food and Beverage				
3	Brewing				
4	Industrial Mixing				
5	BioEnergy				
6	Waste Water				
7	Oil & Gas Industry				



Waste Treatment

Waste Treatment

Objectives

Pre-treatment of waste water sludge's to maximise the biogas yields via anaerobic digestion. Particular focus on the biodegradability of secondary sludge (SAS)

Assessment of the pasteurisation capability of the SoniqueFlo technology

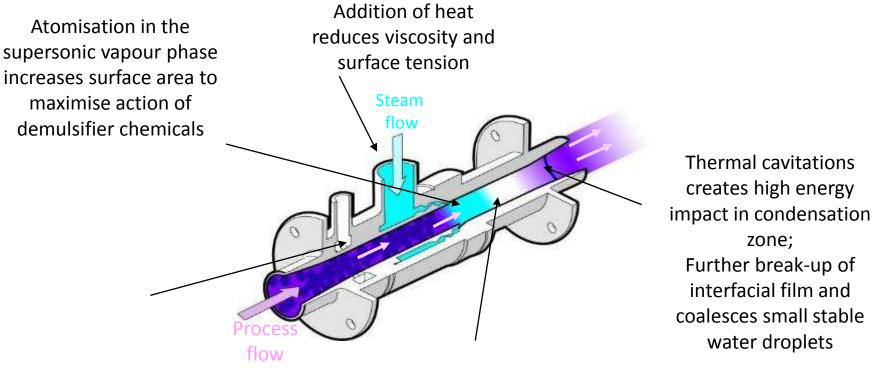
Key Findings

SoniqueFlo pre-treatment on primary sludge (PS) and secondary sludge (SAS) showed the following:

- High solubilisation of sludge, increase in sCOD (soluble Chemical Oxygen Demand)
 - With 3-4 SoniqueFlo passes on SAS an increase of sCOD/TS up to 800% observed
 - With 3-4 SoniqueFlo passes on Primary Sludge a gradual increase of sCOD/TS up to 300% observed
- Decrease in *E.coli* counts after SoniqueFlo processing of waste water sludges
 - Significant decrease (99%) in *E.coli* count with 3 SoniqueFlo passes on SAS
 - Significant decrease (99.999%) in *E.coli* count with 4 SoniqueFlo passes on PS
 - Potential for SoniqueFlo technology to be applied in pasteurisation of food waste and sludge
- Biogas (methane) production increase
 - 1.4 12.9% increase SoniqueFlo treatment at 75°C
 - 1.6 16.9% increase SoniqueFlo treatment at 85°C
 - 5.6 23.0 % increase SoniqueFlo treatment at 95°C

© Copyright Cellulac PLC

Agenda


1	Core Technology					
2	Food and Beverage					
3	Brewing					
4	Industrial Mixing					
5	BioEnergy					
6	Waste Water					
7	Oil & Gas Industry					

318

Oil Industry Applications

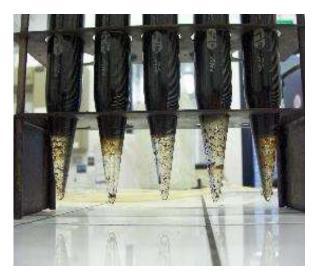
Disrupting interfacial film in the low pressure vapour zone allowing 'like-phase' coalescence

SoniqueFlo Breaking Emulsions

Enhanced mixing of demulsifier chemicals

Disrupting interfacial film allowing coalescence

Vapourising water droplets in water-in-oil mixture


Addition of air enhances flocculation effect

Releasing dissolved gas in vacuum

Addition of heat reduces viscosity and surface tension

Breaking the surfactant bonds

Disrupting electrical charge

Heavy Oil Emulsion Breaking

- Tests run on Acidic Crude (West Africa)
- Extra Heavy Oil (Canadian Source)
- Testing the SoniqueFlo against the industry standard with and without a demulsifier chemical
- Analyses conducted:
 - Decantation
 - Water droplet size (by Differential Scanning Calorimeter)

© Copyright Cellulac PLC

- Water droplet size (by Granulometry)
- Reference decantation curves

Heavy Oil Emulsion Breaking - Trials

Downstream Collection Vessel

Emulsion Breaking - Results

Acidic Crude

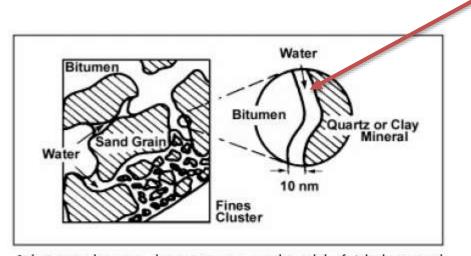
- **Demulsification achieved** with dramatically lower demulsifier content
- Best efficiency achieved at **5** parts per million

(as compared with the **100** parts per million standard in-field)

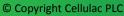
• Separation achieved even with No demulsifier

Emulsion Breaking - Results

EHO


- SoniqueFlo enhances water decantation with **No** demulsifier
- **Demulsification achieved** at **5** parts per million with an additional 45 ppm added afterwards

(as compared with the >100 parts per million standard in-field)



SoniqueFlo Impact on Oil Sands

Schematic diagram showing a structural model of Athabasca oil sand. The water in the oil sand appears in three forms: as pendular rings at grain-to-grain contact points, as a ~ 10 nm thick film which covers the sand surfaces, and as water retained in fines clusters. The remaining void is occupied by bitumen. Courtesy of AOSTRA.^b The 10 µm water film boils in the low-pressure zone of the SoniqueFlo and destabilizes the "emulsion" to separate quicker in the separation unit.

SoniqueFlo Impact on Oil Sands

Oil Sands separation –

- Bitumen separation of 94% at 60 Deg. C, using non-optimised system
- Trials indicated significant capital and operating cost improvement
- No chemicals used
- Results processed at Intertek Sunbury Technology
 Centre

Canadian oil sands sample used in trial

Oil (%)	Solids (%)	Water (%)
11.3 %	85.3%	3.4%

Oil Sands Separation Trials - Results

Summary of Separation Results from InterTek						
Ref No	Test Description	Slurry flow rate (kg/hr)	% of Oil in sample	% of Sand in sample	% of H20 in sample	Separation %
1	SoniqueFlo zone 1- 60DegC	11800	2.96%	73.10%	21.49%	66.65%
2	SoniqueFlo zone 2 - 60DegC	10200	1.26%	79.70%	20.14%	86.66%
3	SoniqueFlo zone 3 - 60DegC	12000	0.64%	82.24%	16.32%	93.38%
4	SoniqueFlo zone 1 - 20DegC	12100	7.66%	62.40%	31.48%	6.31%
6	Baseline Sample	N/A	11.27%	85.30%	2.14%	N/A
7	SoniqueFlo zone 1 - 20DegC with Air	8100	4.87%	74.60%	18.94%	47.49%

NB. No chemicals were added in any of the tests

Extract from results:

Intertek Caleb Brett

Intertek Sunbury Technology Center

Other Oil Industry Applications

- 1. Separation of water-in-oil emulsions from the SAGD process
- 2. Sand processing Cleaning of sand, post separator
- 3. Oil fluidisation (using water or a diluent) for improved pumping/transportation
- 4. Drill cutting separation breaking emulsions
- 5. Preparation/Mixing of drilling Muds (water and oil based)
- 6. Enhanced mixing of chemicals into oil or waste streams
- 7. H2S scavenging

